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Abstract Understanding how the information is conveyed from outside to inside the cell is a critical challenge for
all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix
contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes,
connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the
cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the
formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of
DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains.
Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these
proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the
membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane
skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane
skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel
structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal
transducers and their binding partners, at another level it may be mediated by the balance and integration of signal
transducers in different cellular compartments. J. Cell. Biochem. Suppls. 30/31:250–263, 1998. r 1998 Wiley-Liss, Inc.
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The communication between the cellular mi-
croenvironment and the cell nucleus is critical
to understanding the essence of cell behavior
and tissue development. Signals to be trans-
duced to the cell’s interior upon attachment to
extracellular matrix (ECM) components, or con-
tact with another cell, are mediated by a vari-
ety of adhesion molecules. Using cells cultured
in the presence of a reconstituted basement
membrane, investigators at a number of labora-

tories have been able to show that the interac-
tion between adhesion molecules of epithelial
cells and basement membrane components in-
duces a differentiation program that leads to
the formation of functional tissue-like struc-
tures [Bissell et al., 1987; Li et al., 1987; Barcel-
los-Hoff et al., 1989; Caron, 1990; Petersen et
al., 1992; Matter and Laurie, 1994; Hoffman et
al., 1995]. Similarly, the interaction between
adhesion molecules of osteoblasts and fibronec-
tin promotes the production of osteopontin, one
of the predominant proteins of the bone tissue
[Carvalho et al.,1998]. ECM-mediated regula-
tion of the expression of a defined repertoire of
genes is conveyed, at the molecular level, by a
modification of DNA-protein interactions [Owen
et al., 1990] and the activation of ECM-re-
sponse elements located in the promoters of
some of the expressed genes [Schmidhauser et
al., 1990, 1992; Liu et al., 1991]. Cell-cell inter-
action also induces the expression of specific
genes that regulate tissue differentiation and
morphogenesis [Takeichi, 1995; Gumbiner,
1996; Redfield et al., 1997]. Moreover, the inter-
play between the formation and loss of adhe-
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sion complexes and the correct balance of differ-
ent kinds of adhesion molecules is essential for
tissue development and maintenance of differ-
entiation [Martins-Green and Bissell, 1995;
Herminston et al., 1996], and the alteration of
this equilibrium can lead to extreme behavior
such as apoptosis [Tenniswood et al., 1992;
Sympson et al., 1994; Frisch and Francis, 1994;
Boudreau et al., 1995] and tumor formation
[Gamallo et al., 1993; Sympson et al., 1995;
Lochter and Bissell, 1995; Perl et al., 1998;
Hagios et al., 1998].

Whereas it is now well established that cell-
ECM and cell-cell interactions can regulate gene
expression and cell behavior, the way informa-
tion is transduced from the cell membrane to
the nucleus remains an exciting challenge for
biologists to solve at the dawn of the third
millennium. Explored mechanisms of cell adhe-
sion-mediated signal transduction encompass
the induction of biochemical cascades that ulti-
mately regulate the activity of transcription
factors [Baichwal et al., 1991; Juliano and
Haskill, 1993; O’Neill et al., 1994], alterations
of histone acetylation [Loidl, 1994; Alberts et
al., 1998; Myers et al., 1998], and remodeling of
supramolecular organization of nuclear matrix
proteins, defined by the redistribution of these
components to distinct nuclear sites [Lelièvre
et al., 1998]. In addition, the existence of a
structural continuity from the cell membrane
and cytoplasm to the nuclear matrix and chro-
matin [Capco et al., 1984] has been postulated
to also participate in the rapid transmission of
information within the cell [Bissell et al.,1982;
Ingber, 1997]. Elements of proof for this concept
have been brought to our attention during the
past decade [Pienta and Coffey, 1992; Sims et
al, 1992; Maniotis et al., 1997; Lelièvre et al.,
1998].

Cell adhesion-mediated signal transduction
is initiated by the supramolecular organization
of adhesion molecules and proteins localized in
the inner part of the cell membrane, referred to
as the membrane skeleton [Luna and Hitt,
1992]. By acting both as inducers of biochemi-
cal cascades and as organizers of cytoskeletal
fibers, proteins of the membrane skeleton bring
together the chemical and mechanical aspects
of intracellular signaling. Recently, their role in
signal transduction has been underscored by
their capacity to travel to the nucleus. The
nuclear translocation of membrane skeleton pro-
teins and, inversely, the possibility that pro-

teins usually involved in supramolecular struc-
tures of the nucleus may translocate to the cell
membrane, raise new and important mechanis-
tic issues for signal transduction, and add a
new dimension to the concept of dynamic reci-
procity proposed almost two decades ago [Bis-
sell et al., 1982].

STRUCTURAL SIGNAL TRANSDUCERS
OF THE MEMBRANE SKELETON

Communication between spatially separated
elements such as the cell membrane and the
chromatin requires intracellular mediators, re-
ferred to as structural and biochemical signal
transducers. Our general understanding is that
a signal transducer can receive a signal and
transfer the information to the next component
of the signaling cascade by altering its molecu-
lar state and modifying its binding to other
cellular components. Typically, signals initi-
ated at cell adhesion sites, by cell-ECM or cell-
cell contacts, are transduced by membrane skel-
eton proteins, also referred to as junctional
plaque proteins [Kartenbeck et al., 1982; Ben-
Ze’ev, 1997]. Although these structural signal
transducers share common characteristics such
as involvement in phosphorylation/dephos-
phorylation cascades and the capacity to induce
cytoskeletal reorganization [for review, see Long-
hurst and Jennings, 1998], they are specific for
each type of adhesion complex. Focal adhesions
(FAs), a class of cell-ECM adhesion complexes
formed by the interaction of various types of
integrin heterodimers with specific ECM mol-
ecules, contain a large number of connective
membrane skeleton (CMS) proteins (e.g., a-acti-
nin, talin, tensin, vinculin, Cas, moesin, fim-
brin, paxillin, and zyxin) [Weisberg et al., 1997;
Brugge, 1998] that interact with a broad range
of kinases and phosphatases, and are impli-
cated in the control of actin and myosin fila-
ment assembly (Fig.1) [Schlaepfer and Hunter,
1996; Golsteyn et al., 1997; Helmke et al., 1998].
Similarly, hemidesmosomes are formed by the
interaction between the ECM component lami-
nin and a6-b4 integrin, and the recruitment of
CMS proteins, plectin and bullous pemphigoid
antigen 230, to form the hemidesmosomal
plaque. Hemidesmosome formation directs the
organization of intermediate filament type pro-
teins and initiates phosphorylation cascades
[Wiche et al., 1993; Giancotti, 1996; Jones et al.,
1998; Rezniczek et al., 1998; Schaapveld et al.,
1998] (Fig. 1). Cell-cell adhesion complexes (i.e.,
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tight junctions, adherens junctions and desmo-
somes) have been characterized both microscopi-
cally [Farquhar et al., 1963] and by their compo-
sition. Their localization in a tissue is highly
ordered. Tight junctions or zonula occludens
are located at the outermost edge of the intercel-
lular space (i.e., at the apical part of epithelial
glandular cell assemblies) and are believed to
participate in maintaining cell polarity [Cerei-
jido et al., 1998] along with other cell-cell adhe-
sion complexes [Nathke et al., 1994]. Several
tight junction-associated CMS proteins have
been identified, including ZO-1, ZO-2 and ZO-3,
members of the membrane-associated guanyl-
ate kinase family (MAGUK), as well as 7H6,

cingulin, and symplekin (Fig.1) [Citi, 1993;
Haskins et al., 1998; Mitic and Anderson, 1998;
Balda and Matter, 1998]. Tight junctions and
adherens junctions together form apical junc-
tional complexes. Adherens junction-associated
CMS proteins encompass symplekin, plakoglo-
bin, a-catenin, b-catenin, vinculin, and undoubt-
ably another host of known and unknown pro-
teins, that interact with actin, as is the case
also in tight junctions [Weiss et al., 1998] (Fig.1).
Desmosomes constitute a third type of cell-cell
junction, where adhesion is mediated through
the desmosomal cadherins desmocollin and des-
moglein and the CMS proteins desmoplakin
and plakoglobin that are connected to interme-

Fig. 1. Organization of cell-cell adhesion complexes (tight
junction, adherens junction, desmosome) and cell-ECM adhe-
sion complexes (focal adhesion, hemidesmosome). The forma-
tion of cell-cell and cell-ECM interactions involves specific cell
membrane adhesion molecules (blue), that interact with connec-
tive membrane skeleton (CMS) proteins (green). CMS proteins
themselves interact with other cytoskeletal proteins to organize
cytoskeleton networks (A: actin microfilaments; IF: intermediate

filaments; M: myosin filaments). Moreover, biochemical signal
transducers (purple) are found at the cell membrane or in its
vicinity and participate in the regulation of cell adhesion com-
plexes and/or in the transfer of signals initiated at cell adhesion
complexes. Some CMS proteins (red ), as well as biochemical
signal transducers (red ), have been observed in the nucleus
under specific circumstances. The list of cell adhesion complex
components is nonexhaustive. Color plate on page 329.
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diate filament type proteins [Green et al., 1998;
Smith and Fuchs, 1998] (Fig. 1). As with cell-
ECM adhesion complexes, cell-cell adhesion
complexes interact with various kinases and
phosphatases.

Although adhesion complexes are built with
different components, they are connected to the
same network of cytoskeletal filaments, their
integrity depends on tyrosine kinase activity,
and they share similar biochemical signal trans-
ducers [Yamada and Geiger, 1997]. This indi-
cates that from one complex to another, the
organization of cell adhesion complexes follows
the same linear path including adhesion mol-
ecules linked to complexes of CMS proteins and
kinases/phosphatases that regulate the induc-
tion of biochemical cascades and the organiza-
tion of the cytoskeleton (Fig. 2), but it does not
mean that these structures behave similarly.
For instance, treatment with protein phospha-
tases disrupts FAs and the underlying cytoskel-
eton [Schneider et al., 1998], while increased
tyrosine phosphorylation induces the redistribu-
tion of adherens and tight junction proteins
[Collares-Buzato et al., 1998]. More specifically,
adherens junction disassembly is due to in-

creased phosphorylation mediated through
MAP kinase and PI 3-kinase pathways [Po-
tempa and Ridley, 1998], whereas desmosome
disassembly appears to be regulated by activa-
tion of PKC [Amar et al., 1998].

Cell adhesion complexes participate in the
coordinated regulation of cell division, survival,
and differentiation [Weaver et al., 1997; Bailey
et al., 1998; Balda and Matter, 1998; Bissell,
1998; Clark et al., 1998; Perl et al., 1998;
Sharma, 1998; Short et al., 1998]. This coordi-
nated regulation of cell behavior is mediated by
the integration of the linear paths of cell adhe-
sion complexes through interconnection with
other signal transduction cascades [Wang et al.,
1998], and the link between actin and interme-
diate filament networks [Yang et al., 1996; Ya-
mada and Geiger, 1997; Fuchs and Cleveland,
1998] (Fig. 2). This defines an integrated func-
tion for cell adhesion complexes, which is ruled
by the equilibrium between the different adhe-
sion structures. In addition, alternate construc-
tion and deconstruction of cell adhesion com-
plexes has been shown to be critical for
developmental programs and cell migration. In
this case, modulation of cellular behavior is due

Fig. 2. Linear path and integrated functions
of cell adhesion complexes. All cell adhesion
complexes follow the same organizational
path, which involves the recruitment of con-
nective membrane skeleton (CMS) proteins
upon cell-cell and cell-ECM interaction, and
the induction of the formation of multiprotein
complexes at the inner part of the cell mem-
brane. These complexes include biochemical
signal transducers such as kinases (Ki) and
phosphatases (Ph) and cytoskeletal proteins
and lead to the initiation of biochemical cas-
cades and the reorganization of cytoskeletal
fibers (A, actin; IF, intermediate filaments).
This defines the linear path of cell adhesion
complexes. The integrative function results
from the influence of the various cell adhesion
complexes on each other through the physical
interconnection of cytoskeletal networks
(linker) and the interactions between bio-
chemical signaling pathways. The integrative
function is ultimately responsible for the regu-
lation of cytoplasmic and nuclear activities
that determine the cell and tissue phenotype.
Color plate on page 330.
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to the switch of dominant signaling pathways
that results from equilibrium shifts and tempo-
rary delocalization of adhesion proteins and
membrane skeleton proteins. However, if there
is sustained imbalance, the equilibrium shift
may also lead to the stimulation of tumor devel-
opment [Sympson et al., 1995 and in prepara-
tion; Weaver et al., 1997; Thomasset et al.,
1998; Efstathiou et al., 1998; Tselepis et al.,
1998; Shinohara et al., 1998].

CONNECTIVE MEMBRANE SKELETON
PROTEINS ALSO RESIDE IN THE NUCLEUS

The CMS proteins, b-catenin, plakoglobin,
plakophilin 2, symplekin, ZO-1, and zyxin have
all been observed in the nucleus. Logically, only
the CMS proteins free from their interaction
with adhesion complexes will translocate into
the nucleus. The constitution of a free pool of
CMS proteins could result from the expression
of these proteins above the level necessary for
the formation of adhesion complexes, as was
the case after overexpression of exogenous pla-
koglobin in transfection experiments [Karno-
vsky and Klymkowsky, 1995]. However, CMS
proteins are more likely to be observed in the
nucleus when the formation of adhesion com-
plexes is impaired, as it has been described in
naturally occurring situations. Endogenous
b-catenin has been found in tumor cell nuclei in
which cell adhesion complexes were altered
[Bailey et al., 1998]. Endogenous symplekin
and plakophilin 2 were observed in the nucleus
of cells that usually do not form adherens junc-
tions or desmosomes [Mertens et al., 1996; Keon
et al., 1996]. The presence of endogenous ZO-1
in the nucleus of epithelial cells was inversely
correlated with the extent or maturity of tight
junctions [Gottardi et al., 1996], and apical
polarity in mammary acini (Lelièvre and Bis-
sell, unpublished observations). The localiza-
tion of these CMS proteins in cell adhesion
complexes and in the nucleus is not mutually
exclusive, as both locations have been simulta-
neously observed in many cases. This finding
suggests that there may be an equilibrium be-
tween membrane skeleton and nuclear localiza-
tion of the CMS proteins.

The creation of a free pool of CMS proteins
via their release from existing cell adhesion
complexes or through other mechanisms is not
sufficient to explain how these proteins can
enter the nucleus. The study of shuttling pro-
teins has shown that the mechanisms of nuclear

translocation are highly regulated and it is
conceivable that translocating CMS proteins
may conform to the same mechanisms. It is
known that proteins of .40 kD actively enter
the nucleus by binding to the nucleopore pro-
teins importins through a nuclear localization
signal (NLS) and by translocating through an
energy-dependent mechanism [Görlich and
Mattaj, 1996]. While a putative NLS has been
identified in the sequence of both ZO-1 and
symplekin proteins [Gottardi et al,. 1996; Keon
et al., 1996], the evidence that these NLS are
functional is still lacking. If indeed they are
functional, it will be worthwhile to analyze the
possible nuclear localization of other NLS bear-
ing CMS proteins (e.g., plectin) [Nikolic et al.,
1996]. The presence of a functional NLS may
not always be necessary for the nuclear translo-
cation of CMS proteins. These proteins could
‘‘piggy-back’’with other NLS-bearing molecules,
as proposed for b-catenin, which travels as a
complex with LEF-1 [Funayama et al., 1995;
Behrens et al., 1996; Simcha et al., 1998]. NLS-
free CMS proteins could also bind directly to
the nuclear pore and translocate into the
nucleus, as demonstrated recently for b-catenin
[Fagotto et al., 1998]. It will be important to
clearly classify those proteins that ‘‘piggy-back’’
from self-translocating CMS proteins. In the
former case, the nuclear translocation is depen-
dent not only on a free pool of CMS proteins,
but also on the availability of their carrier.

Once CMS proteins are trapped in the
nucleus, they may stay there until a signal
induces their release from nuclear complexes
and initiates their degradation. De novo expres-
sion of proteins would re-create the pool of CMS
proteins in the cytoplasm. However, since the
control of the nuclear translocation of CMS
proteins is achieved by their release from inter-
actions with cell membrane and cytoskeletal
components, it is similarly possible that their
release from interactions with nuclear partners
would lead to their return to the cytoplasm. The
study of protein shuttling has shown that pro-
teins can slowly diffuse out of the nucleus with-
out any specific signal [Schmidt-Zachmann et
al., 1993], while a fast re-entry into the cyto-
plasm is regulated by pathways distinct from
nuclear import mechanisms [Moroainu, 1998].
The rapid transit of nuclear proteins to the
cytoplasm is mediated by nuclear export se-
quences (NES) via energy-dependent extrusion
mechanisms [Wen et al., 1995; Richards et al.,
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1996]. Thus far, only the CMS protein zyxin has
been shown to possess a functional NES, and
its traveling into and out of the nucleus has
been observed in the course of antibody-injec-
tion experiments [Nix and Beckerle, 1997]. How-
ever, as with nuclear protein import, we could
imagine that CMS proteins could also leave the
nucleus by ‘‘piggy-backing.’’ Bidirectional tran-
sit of zyxin could be regulated by temporarily
masking the NES, and/or by the presence of a
nuclear retention signal or cytoplasmic reten-
tion signal that would be responsible for the
binding of the protein to nuclear or cytoplasmic
components, as has been proposed for shuttling
proteins [Wen et al., 1995; Nakielny and Drey-
fus, 1996; Richards et al.,1996]. The participa-
tion of CMS proteins in the formation of adhe-
sion complexes is an example of cytoplasmic
retention.

DO NUCLEAR CMS PROTEINS ACT
AS SIGNAL TRANSDUCERS?

The release of CMS proteins from cell adhe-
sion complexes and their nuclear translocation
are both highly regulated; thus, we can antici-
pate that the journey of CMS proteins to the
nucleus is another important facet of signal
transduction. Most of the CMS proteins bear
sequences that link them to families of proteins
known to participate in the mediation of signal
transduction events, such as the armadillo fam-
ily for b-catenin, plakoglobin, and plakophilin 2
[Peifer et al., 1994], and the MAGUK family for
ZO-1 [Willot et al., 1993]. Zyxin harbors LIM
domains known to participate in protein-pro-
tein interactions and that might interact with
nucleic acids [Schmeichel and Beckerle, 1994,
1997; Nix and Beckerle, 1997; Beckerle, 1997].
The role of the nuclear translocation of CMS
proteins in signal transduction is further sup-
ported by the fact that some CMS proteins are
found in the nucleus of cell types that do not use
these CMS proteins in the formation of their
adhesion complexes [Mertens et al., 1996; Keon
et al., 1996]. Interestingly, MAP kinases (erk1,
erk2, and Nlk) known to be associated with cell
adhesion complexes-mediated signaling have
also been shown to travel to the nucleus. Their
role as nuclear signal transducers is easier to
grasp compared with CMS proteins because
MAP kinases could drive the continuity of bio-
chemical transduction cascades by exerting
their kinase activity both in cytoplasmic and
nucleoplasmic compartments [Sanghera et al.,

1992; Chen et al., 1992; Khokhlatchev et al.,
1998; Brott et al., 1998]. Their translocation is
regulated as shown for erk2, the nuclear import
of which is promoted by phosphorylation-di-
rected homodimerization [Khokhlatchev et al.,
1998]. Another type of regulation of transloca-
tion has been described for MAPKAP kinase2,
which is exported to the cytoplasm upon stress
induction and also harbors an NLS [Engel et
al., 1998]. Potential nuclear targets of MAP
kinases include Rb [Taieb et al., 1998], histone
H3, c-Fos, c-Jun, and transcription factors phos-
phorylated in response to growth stimuli [Chen
et al., 1992]. Nuclear MAP kinases have also
been proposed to participate in the regulation
of insulin gene transcription [Benes et al.,1998].

The best evidence for a meaningful function
for nuclear CMS proteins as signal transducers
would require the characterization of the cellu-
lar behaviors associated with their presence in
the cell nucleus and the identification of their
nuclear binding partners. This goal has been
achieved partly for nuclear b-catenin, a compo-
nent of the Wnt signaling pathway, which has
been implicated in the induction of embryonic
axis in Xenopus and the regulation of gene
expression in higher organisms via the forma-
tion of a complex with transcription factor
LEF-1 and DNA [McCrea et al., 1993; Fu-
nayama et al., 1995; Gumbiner, 1995; Behrens
et al., 1996; Papkoff et al., 1996; Brannon et al.,
1997; Larabell et al., 1997; Miller and Moon,
1997]. More specifically, LEF-1-b catenin com-
plexes have been shown to bind to the 58 end of
the E-cadherin gene [Huber et al., 1996]. This
demonstrate that nuclear CMS proteins may
act as repressors or activators of transcription.

Obviously, at this point there are more ques-
tions than answers for the mode of action of
CMS proteins. Before answers are forthcoming,
a number of technical points need to be clari-
fied. The choice of immunostaining conditions
appears to be critical for observing CMS pro-
teins in the nucleus. Thus, caution has been
advised in the use of permeabilization agents,
and in some cases, a special protection buffer
had to be used [Keon et al, 1996; Gottardi et
al.,1996]. A careful monitoring of immunostain-
ing conditions may allow the observation of
other types of CMS proteins in the nucleus. The
fact that, in a number of cases, CMS proteins
located in the nucleus have been shown to be
sensitive to the use of permeabilization agents
indicates that although these proteins are asso-
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ciated with the cytoskeleton in the cytoplasm,
they are not likely to be associated with the
nucleoskeleton or nuclear matrix in the nucleus.
The only CMS protein so far described to be a
nuclear matrix protein, because it stays associ-
ated with cell remnants following DNA removal
under high salt conditions, is protein band 4.1.
This protein is associated with the membrane
skeleton in red blood cells [Matsuzaki et
al.,1985] and other cells [Granger and Lazari-
des, 1984; Leto et al., 1986], and has been
reported to be present in the nuclei of numer-
ous cell types [Coreas, 1991; de Carcer et al.,
1995; Krauss et al., 1997; Lallena and Coreas,
1997]. However, because some of the isoforms
found in the nucleus have been shown to be the
product of alternative splicing, this under-
mines a possible role of protein 4.1 in direct
signal transduction between the cell membrane
and the nucleus [Tang et al., 1988; Luque et al.,
1998; Lallena et al., 1998]. A demonstration
that the same isoform of protein 4.1 shuttles
between the cytoplasm and nucleus requires
further experiments and proof.

A CURRENT PERSPECTIVE ON THE
MECHANISMS OF COMMUNICATION

The dual function of the CMS proteins lo-
cated at the cell membrane that act both as
initiators of biochemical cascades and organiz-
ers of the cytoskeleton, plays a pivotal role in
cell adhesion-mediated extracellular informa-
tion. Once released from adhesion complexes,
CMS proteins are available for interaction with
other cellular components and for possible
nuclear translocation. Thus, they become pow-
erful signal transducers by directly transfer-
ring information from the source, a specific type
of cell adhesion complex formed as a response
to microenvironmental cues, to nuclear targets.
Whether additional intermediate steps are
needed is an open question. An interesting hy-
pothesis for a new level of regulation of directed-
protein localization has been proposed. In this
model, proteins would reach specific cell mem-
brane or nuclear substructures via a defined
targeting sequence [Wu et al., 1998; Cardoso
and Leonhardt, 1998]. This model seems espe-
cially tempting in the case of shuttling proteins
that may bear targeting sequences for substruc-
tures in both cytoplasmic and nuclear compart-
ments. Specific sequences of b-catenin are re-
sponsible for its binding to E-cadherin and

a-catenin in the cytoplasm and although its
arm sequence has been shown to be necessary
for nuclear targeting, its nuclear substructural
destination is not yet known [Behrens et
al.,1996].

CMS proteins can be considered as active
mediators of the dynamic reciprocity between
the microenvironment and the cells. We sug-
gest that there is a bidirectional flow of informa-
tion between the microenvironment and the
nucleus, part of which depends on a molecular
equilibrium defined by the binding of CMS pro-
teins to their various partners. This concept is
well illustrated by the data generated for
b-catenin (Fig. 3). Free cytoplasmic b-catenin,
the presence of which depends on its associa-
tion with other adherens junction molecules
and cell membrane receptors, has to override
the APC-regulated degradation mechanism
[Munemitsu et al.,1995] before going to the
nucleus. The number of free b-catenin mol-
ecules also has to exceed the amount required
to form complexes with free ZO-1 that were
shown to participate in the formation of tight
junctions [Rajasekaran et al., 1996].

Displacement of individual molecular equilib-
ria resulting in the accumulation of CMS pro-
teins in the nucleus, subsequently influences
another level of equilibrium that exists be-
tween distant cellular compartments (e.g., mem-
brane skeleton and nucleus) (Fig. 4). A pro-
longed shift in the compartmental equilibrium
may ultimately lead to the development of aber-
rant cellular behavior, including malignancy.
We have recently shown that it is possible to
reestablish the equilibrium and to revert the
malignant phenotype by correcting the levels
and the signaling of cell adhesion components
[Weaver et al., 1997], as well as other cell sur-
face receptors [Wang et al., 1998]. Thus, an
‘‘oncogene’’ [b-catenin—Peifer, 1997] or tumor
suppressor [ZO-1-Willot et al., 1993] function
could be linked to the relative localization of
CMS proteins, depending on whether they are
in the nuclear or in the membrane skeleton
compartment. The cytoplasmic localization of
c-abl kinase has been associated with the ex-
pression of the malignant phenotype [Van Etten
et al., 1989; Sawyers 1992], whereas in nontu-
mor cells, its nuclear localization has been dem-
onstrated to be essential for the inhibition of
cell growth [Sawyers et al., 1994]. Interest-
ingly, c-abl is primarily considered a nuclear
protein [Van Etten et al., 1989]. It binds to DNA
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and RNA polymerase II [Kipreos and Wang,
1992; Rajasekaran et al., 1996]. Moreover, Rb
protein has been reported to bind c-abl during
G1 phase and to inhibit its kinase activity
[Welch and Wang, 1993]. Nevertheless, c-abl
does not require Rb to exert its growth suppres-
sive activity [Sawyers et al., 1994]. c-abl har-
bors NLSs and a functional NES and has been
shown to shuttle between the nucleus and the
cytoplasm [Lewis et al., 1996; Taagepera et al.,
1998]. The rate of nuclear import and export of
c-abl is regulated by adhesion to the ECM,
which also regulates c-abl tyrosine kinase activ-
ity [Lewis et al., 1996]. Since c-abl activation
requires cell adhesion, and adhesion to ECM
recruits c-abl to early focal adhesions coinci-
dent with export of the protein from the nucleus,
and finally the active nuclear c-abl seems to
originate from the cytoplasmic pool activated
by adhesion, it has been proposed that c-abl is
an important mediator of integrin signals to the
nucleus [Lewis et al., 1996]. It has also been

proposed recently that CMS or adhesion plaque
proteins (e.g., plakophilins, b-catenin, plakoglo-
bin, symplekin) may be genuine nuclear pro-
teins that could be recruited to the membrane
skeleton to participate in the assembly of cell
adhesion complexes during cell differentiation
[Keon et al., 1996]. This seductive hypothesis
will require more evidence starting with the
elucidation of the role played by CMS proteins
in the nucleus. CMS proteins that translocate
to the nucleus may also be shuttling proteins,
as suggested for zyxin [Nix and Beckerle, 1997].

Shuttling proteins are defined as proteins
that continuously travel from the cytoplasm to
the nucleus [Schmidt-Zachmann et al., 1993].
Although not always demonstrated, it is under-
stood that shuttling must be associated with
the transport of information. If primary localiza-
tion sites of shuttling proteins are in the cyto-
plasm, as determined by the visualization of
supramolecular organizations due to the cyto-
plasmic concentration of shuttling protein-

Fig. 3. Molecular equilibrium. CMS
proteins are engaged in a number of
interactions with different cellular com-
ponents. The relative abundance of the
binding partners of CMS proteins regu-
lates the molecular equilibrium, which
in turn affects cellular function. For
example, b-catenin can interact with
cadherins (light blue), ZO-1 (green),
APC (dark blue), EGF receptor (EGF-R),
and erb-2 at the cell membrane. More-
over, cadherin/catenin, EGF-R, b-1-
integrin and a6-b4 integrins interact
with each other. b-Catenin binding with
transcription factor LEF-1(brown) and
its translocation to the nucleus, de-
pends on the existence of a free pool of
b-catenin; it may also be influenced by
the amount of LEF-1 available. Other
factors may contribute to the shift of
the molecular equilibrium, like the in-
teraction of plakoglobin with b-catenin
partners, and Wnt-1 expression which
influences the degradation process as-
sociated with the formation of APC/b-
catenin complexes. The presence GSK3
b and Axin that interact with APC/b-
catenin complexes may also influence
the molecular equilibrium. The return
of b-catenin from the nucleus (dotted
arrow) to interact with cell membrane
binding partners, upon reception of
specific signals, remains to be demon-
strated. Color plate on page 330.
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binding partners or the masking/unmasking of
specific targeting sequences, a very rapid trans-
location in and out of the nucleus will result in
immunostaining seen almost exclusively in the
cytoplasm. The same line of reasoning is true
for a primary localization site in the nucleus.

Many types of supramolecular organization
have been described in the nucleus, including
transcription sites, speckles, coiled bodies, and
PML bodies [Nickerson et al., 1995]. Specific
types of supramolecular organization in the
nucleus have also been described to occur in

Fig. 4. Compartmental equilibrium and dynamic reciprocity.
Nuclear translocation of CMS proteins (red and orange) modi-
fies the balance of these proteins between the membrane skel-
eton compartment and the nuclear compartment and shifts their
molecular equilibrium toward an increase of interactions with
nuclear targets. Translocating CMS proteins can be considered
as structural signal transducers that act as mediators of cell-cell
and cell-ECM signaling, along with biochemical cascades (light
green) possibly superimposed on signaling via tension gener-
ated through actin (A) and intermediate filament (IF) networks.
CMS proteins could translocate into the nucleus on their own
(red) and bind to nuclear proteins (yellow), or they could travel
with a carrier (dark green). The transfer of information from the

nucleus to the cell membrane includes the synthesis of mem-
brane skeleton, cell membrane, and ECM components, it may
also involve feedback reactions to generated tensional force
(not represented). The translocation of nuclear CMS proteins
back to the membrane skeleton may also participate in inside/
out signaling. Similarly, proteins primarily located in the nucleus
could travel to the cell membrane (yellow), as shown with c-abl.
We propose that nuclear structural proteins involved in supramo-
lecular organization of the nucleus also may travel to the cell
membrane. The balance between these interactive signaling
pathways represents the dynamic reciprocity that governs cellu-
lar and tissue behavior. Color plate on page 331.
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association with tissue-like morphogenesis
[Lelièvre et al., 1998]. The shuttling of compo-
nents found primarily in the nucleus has been
described for snRNAs and RNA-binding pro-
teins, as well as for proteins participating in
nuclear import, heat shock proteins, and nucleo-
lar proteins [Schmidt-Zachmann et al., 1993;
Görlich and Mattaj, 1996], and the shuttling of
molecules from sites predominantly located in
the nucleus to the cytoplasm has been sug-
gested to participate in the regulation of nuclear
functions.

Sooner or later, we must put a plan together
as to how parts are integrated to bring about
homeostasis. Recent data demonstrating the
coupling of integrins and EGF receptor path-
ways in epithelial cells cultured three-dimen-
sionally in the presence of a reconstituted base-
ment membrane, as opposed to monolayer
culture [Wang et al., 1998], as well as the dem-
onstration of movement of specific mRNAs to
focal adhesion complexes [Chicurel et al., 1998],
point to the intimate relationship between posi-
tional and functional information. To complete
the dynamic reciprocity scheme, we anticipate
that, as with the behavior of CMS proteins,
more resident structural components of the
nucleus may travel in the opposite direction to
the cell membrane and hence act as nuclear
signal transducers.
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